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1. Introduction

The spectral volume (SV) method was introduced in 2002 by Wang [1]. Its further development, such as the exten-
sion to 2D and 3D and the application to the Euler and Navier–Stokes equations, was reported by Wang et al. [2–5], Liu
et al. [6] and Sun et al. [7]. Recently, a more efficient, quadrature-free implementation of the SV method was presented
in Harris et al. [8]. A number of high-order SV schemes for triangles and tetrahedrons were defined in Chen [9]. The SV
method is related to the discontinuous Galerkin method, see e.g. Cockburn and Shu [10], and the references therein, and
to the spectral difference (SD) method, see e.g. Sun et al. [11]. All these methods use piecewise continuous polynomials
to represent the solution. Moreover, in Van den Abeele et al. [12], it was shown that in 1D, the SV and SD methods are
equivalent.

In Van den Abeele et al. [13] and Van den Abeele and Lacor [14], the stability of the SV method was analyzed for 1D and
2D, respectively. Several SV schemes that have been used in literature were found to suffer from weak instabilities, and sta-
ble SV schemes were proposed for 1D and 2D. In the present note, the stability of the SV method on 3D tetrahedral grids is
analyzed using the matrix method, see e.g. Hirsch [15]. The second-order scheme and four families of third-order schemes
are investigated. Although the second-order scheme is stable, a surprising result is that no stable scheme was found in any of
the four families of third-order schemes.

The rest of this note is organized as follows. A brief summary of the SV method is given in Section 2. In Section 3, 3D SV
partitions on a tetrahedron are defined, after which the methodology for the stability analysis is explained in Section 4. The
results of the stability analysis are then discussed in Section 5 and conclusions are drawn in Section 7.
. All rights reserved.
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2. Spectral volume method

The spectral volume method is used to solve conservation laws (1)
@U
@t
þ ~r �~FU ¼ 0: ð1Þ
The computational domain V is divided in NSV cells Vi, called spectral volumes, with volume jVij. Each SV is further subdi-
vided into control volumes (CV) Vi;j. Integrating (1) over such a CV and applying the Gauss theorem give
@Ui;j

@t
Vi;j

�� �� ¼ �Z
@Vi;j

~F � d~s; ð2Þ
where jVi;jj is the volume of Vi;j and Ui;j is the CV average defined by
Ui;j �
1

Vi;j

�� ��
Z

Vi;j

UdV : ð3Þ
On a spectral volume Vi, the SV polynomial approximation of the solution is defined
UVi
� uVi

�
XNCV ðp;dÞ

j¼1

Ui;jLi;j: ð4Þ
In Eq. (4), NCV ðp; dÞ is the number of CVs in a SV, depending on the desired degree of the polynomial approximation p and the
number of spatial dimensions d. The polynomials Li;j associated to the CVs Vi;j are defined by
Fig. 1. Second-order 3D SV partition.

Fig. 2. Two-parameter family (a) and first three-parameter family (b) of partitions for a third-order 3D SV partition.



Fig. 3. Second (a) and third (b) three-parameter family of partitions for a third-order 3D SV partition.
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1
Vi;j

�� ��
Z

Vi;j

Li;mdV ¼ djm; ð5Þ
where djm is the Kronecker delta function. With the polynomial approximation uVi
, the flux integral in (2) can be approxi-

mated to order pþ 1, using Gauss quadrature. On the boundary between two SVs however, there are two available values
for the flux~F, one from within each SV. Thus on these boundaries a suitable Riemann flux ~FR, for instance the Rusanov flux,
must be used. A more elaborate overview of the SV method can be found in [1–4,6,7].

3. 3D spectral volume partitions

The second-order partition is uniquely defined and is plotted in Fig. 1.
The third-order partition is not uniquely defined. Four possible partition families are illustrated in Figs. 2 and 3. In gen-

eral, three parameters are needed to define a third-order partition. Here, the following parameters are used: a ¼ jACj=jABj,
b ¼ jAEj=jADj and c ¼ jAGj=jAFj, where the points A to G are shown in the figures. These are the same parameters that were
used in Liu et al. [6]. Their values lie in the following intervals: a 2�0;1=2�; b 2�0;2=3� and c 2�0;3=4�.

The family of partitions in Fig. 2(a) is a simplified case, where it is imposed that the internal faces of the corner CVs are
planar. This way, two free parameters remain, namely a and b, with the third parameter c defined by
c ¼ 3ab
4a� b

: ð6Þ
This is the family of partitions that was considered in Liu et al. [6] and Chen [9]. Notice that for this family, there are further
restrictions on the values that a and b can assume, namely b < 4a for c to be greater than zero, and b 6 4a=ð4aþ 1Þ to satisfy
c 6 3=4. Notice that the second condition is more restrictive than the first.

For the second and the third family of partitions, shown in Figs. 2(b) and 3(a), respectively, all parameters can be chosen
freely. The internal faces of the corner CVs are subdivided into two triangles. As can be seen in the figures, the two families
Fig. 4. Generating pattern of the mesh used for the analysis.
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Fig. 5. Distribution of eigenvalues of the matrix M for the second-order 3D SV scheme in the complex plane.
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differ in the way these faces are subdivided. For the last family of partitions, shown in Fig. 3(b), the internal faces of the cor-
ner CVs are treated as a single bilinear quadrilateral face (no additional edge is introduced).

4. Methodology for stability analysis

The method for the stability analysis used here is the matrix method, as described in Hirsch [15], applied to the 3D linear
advection equation
Fig. 6.
a ¼ 1=2
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@u
@t
þ ~r � ð~auÞ ¼ 0; ð7Þ
where~a is the propagation speed. This equation is discretized in space with the SV method, on a mesh formed by periodically
repeating the generating pattern, shown in Fig. 4, NGP times along the direction with three nodes in the generating pattern,
creating a long channel. The mesh then contains NSV ¼ 10� NGP cells and NCV ;tot ¼ NSV � NCV CV-averaged solutions.

The cell size Dx is defined by the shortest distance between two nodes in the generating pattern. The propagation speed~a
is directed along the channel axis and the inlet and outlet of the channel are connected, creating a periodic direction. Since~a
is directed along the channel axis, the boundary conditions on the sides of the channel have no influence, because the flux
through these faces is zero. The exact solution is then an undamped propagation of the initial solution along the channel.
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This configuration was chosen because it allows to detect weak instabilities in solution modes with a long wavelength with
respect to the cell size Dx, which were found to be a problem of many 1D and 2D SV partitions in [13,14].

The problem is non-dimensionalized using
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x y z½ �s ¼ Dx x0 y0 z0½ �s and t ¼ Dx
~a
�� �� t0: ð8Þ
Eq. (7) then becomes, after spatial discretization and non-dimensionalization,
@U
@t0
¼MU; ð9Þ
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where U is a column vector containing all the CV-averaged solutions on the mesh and the matrix M is a function of the mesh,
the scheme and the propagation direction ~1a ¼~a=j~aj. The exact solution of (9) can be written as
U t0ð Þ ¼
XNCV ;tot

j¼1

C0
j Vj exp kjt0

� �
; ð10Þ
with kj and Vj the eigenvalues and eigenvectors of the matrix M, and the coefficients C0
j are defined by the initial solution,

such that
Uð0Þ ¼
XNCV ;tot

j¼1

C0
j Vj: ð11Þ
For the solution to be stable, all the eigenvalues kj should have a non-positive real component, since a positive real compo-
nent would lead to an exponentially growing, and thus unstable, mode.
5. Results of stability analysis

For all the results given in this section, NGP was set to 13, which yields a mesh with NSV ¼ 130 cells. With the second-order
scheme, there are then NCV ;tot ¼ 520 CV-averaged solutions on the mesh, and NCV ;tot ¼ 1300 with a third-order scheme.

5.1. Second-order scheme

This scheme is stable for the problem described in the previous section. The eigenvalues of the matrix M are plotted in
Fig. 5. The stability of this scheme was also verified for meshes with more cells.

5.2. Two-parameter family of partitions for the third-order scheme

Here, the family of third-order partitions shown in Fig. 2(a) is considered. Fig. 6 shows the logarithm in base ten of
the maximum real eigenvalue kmax

Re obtained with the stability analysis, for a varying between 1/20 and 1/2 with steps of
1/20 and b between 2/30 and 2/3 with steps of 2/30. Notice that the additional boundary imposed by b 6 4a=ð4aþ 1Þ
has also been plotted in this figure. For the scheme to be stable, kmax

Re should be zero, and thus the logarithm should be
minus infinity.

Fig. 7 shows three plots where kmax
Re is plotted versus a and b in more detail, in a zone where kmax

Re is small. It is seen that in
these zones, there are no steep gradients in the evolution of kmax

Re as a function of a and b, and it is expected that the resolution
in a and b is enough to get a clear picture of the evolution of kmax

Re . The maximum real eigenvalue is never below 1e� 3, mean-
ing that none of the partitions yields a stable scheme.

5.3. Three-parameter families of partitions for the third-order scheme

For the three-parameter third-order partition families shown in Figs.2(b), 3(a) and (b), the stability analysis yields similar
results as for the two-parameter family in the previous section. The evolution of kmax

Re versus a, b and c for these partition
families has been plotted in Figs. 8–10, respectively. The maximum real eigenvalue is never below 1e� 3, indicating that
there is again no partition that yields a stable scheme.

6. Test case

To verify the theoretical results presented in the previous section, the test problem used for the stability analysis was
solved with the second-order SV scheme and two third-order SV schemes. The first third-order scheme was proposed by
Chen [9] and is defined by a ¼ 0:1093621117; b ¼ 0:1730022492 and c given by (6). The other third-order scheme was pro-
posed in Liu et al. [6] and corresponds to a ¼ b ¼ c ¼ 0:25. Both schemes belong to the first family of third-order partitions
that were discussed above. The same configuration as described above was used for this problem, with the cell size Dx equal
to 1.0. The initial solution was a plane wave with a Gaussian profile, given by
uðx; y; z; t ¼ 0Þ ¼ exp � x� 2:5
0:5

� �2
" #

: ð12Þ
For the integration in time, the third-order total variation diminishing Runge–Kutta (TVD R–K) scheme (see [16]) was used,
with a time step equal to 0.01. The magnitude of the propagation speed j~aj was set to one, which results in a CFL number
equal to 0.01. The residual histories are plotted in Fig. 11. As predicted by the analysis, the second-order scheme is stable,
while the third-order schemes are not.
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7. Conclusions

In the present note, the stability of second- and third-order spectral volume schemes for 3D tetrahedral grids has been
analyzed. The matrix method for stability analysis was applied on a model problem, namely a linear advection along the ax-
ial direction of a long periodic channel. This model problem allows to detect weak instabilities in solution modes with a long
wavelength with respect to the cell size. With this stability analysis, it was confirmed that the second-order scheme is stable.
However, no stable schemes were found in a two-parameter family of third-order SV partitions that has previously been con-
sidered in literature. An effort was made to achieve a stable scheme by considering three more general three-parameter fam-
ilies of partitions, but the effort was not successful. New ideas are needed to stabilize the 3D third-order SV schemes for



Fig. 11. Comparison of residual histories for 3D linear advection model problem.
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tetrahedral grids. As a test, the model problem used for the analysis was solved numerically with second- and third-order SV
schemes. The results of this test were in agreement with those of the analysis.
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